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Overview

This progress report, for grant NAG-l-1265, is given in the form of a manuscript which

is currently under review for publication in the Journal of Computational Physics, titled "An

Approximately-Factored Incremental Strategy For Calculating Consistent Discrete Aerodynamic

Sensitivity Derivatives." This manuscript was also presented as unpublished AIAA paper 92-4746

at the 2nd AIAA/USAF/NASA/OAI Multidisciplinary Design and Optimization Conference,

Sept. 1992, in Cleveland Ohio. The work illustrates the successful completion of a large portion

of the tasks which were promised during this year of the grant.
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In this study involving advanced fluid flow codes, an incremental iterative formulation

(also known as the "delta" or "correction" form)together with the well-known spatially-split

approximate factorization algorithm, is presented for solving the very large sparse systems of

linear equations which are associated with aerodynamic sensitivity analysis. For smaller 2D

problems a direct method can be applied to solve these linear equations in either the standard

or the incremental form, in which case the two are equivalent. Iterative methods are needed

for larger 2D and future 3D applications, however, because direct methods require much more

computer memory than is currently available. Iterative methods for solving these equations

in the standard form are generally unsatisfactory due to an ill-conditioning of the coefficient

matrix; this problem can be overcome when these equations are cast in the incremental form.

These and other benefits are discussed herein. The methodology is successfully implemented and

tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer

Navier-Stokes equations. Results are presented for two sample airfoil problems: 1) subsonic

low Reynolds number laminar flow, and 2) transonic high Reynolds number turbulent flow.
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For many complex flow fields of interest in practical engineering problems, accurate detailed

analyses are now possible using supercomputers and advanced software; these codes have been

developed in recent years through an intensive research effort focused in the discipline now

known as Computational Fluid Dynamics (CFD). For these advanced CFD codes to become

more useful as practical design tools, additional software is needed which will efficiently provide

accurate aerodynamic sensitivity derivatives which are consistent with the discrete flow solutions

of the particular CFD code of choice. The theme of this study is the ongoing development of

a methodology for calculating these derivatives.

A sensitivity derivative is defined as the derivative of a system response of interest (e.g.,

the lift or drag of an airfoil) with respect to an independent design variable of interest (e.g., a

parameter which controls the shape of an airfoil). In a typical design environment, a very large

number of analyses are often made in determining the "best" design. An efficient method for

calculating accurate sensitivity derivatives can be applied in several different ways to significantly

reduce the number and/or computational cost of these multiple analyses. This could be critical

for the integration of advanced CFD codes into a systematic design methodology, where the

computational cost of a single flow analysis can be extremely high, particularly in 3D.

One method of a very general yet conceptually simple nature for computing aerodynamic

sensitivity derivatives is the method of "brute-force" finite differences. With this method,

assuming forward finite difference approximations are used, the CFD flow analysis code is used

to generate one converged flow solution for a slightly perturbed value of each design variable for

which sensitivity derivatives are required. The principal drawback of this method is clearly that

of computational cost, since the number of flow analyses required in a typical design problem can

be extremely (i.e., prohibitively) large, particularly when the number of design variables is large.
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As a typically less costly alternative to the finite difference approach, aerodynamic sensitivity

derivatives can (in principle) be computed by direct differentiation of the governing equations

which control the fluid flow. If the continuous governing equations are differentiated 0riot to

their numerical discretization, the method is known as the "continuum" approach. In contrast,

if the resulting algebraic equations which model the governing equations are differentiated

following their discretization, the method is known as the "discrete" approach. In developing

efficient methods for computing these sensitivity derivatives and their subsequent application to

aerodynamic design problems, researchers have been and remain active; Refs. [1] through [25]

are a representative (but not exhaustive) sample of papers which are germane to the present effort.

Reference [8] addresses the distinction between the aforementioned "continuum" and "discrete"

approaches, and Refs. [24] and [25] are earlier studies upon which the present effort is based.

The present study represents an extension of the recent efforts of Refs. [13] through [23],

where fundamental sensitivity equations are derived by direct differentiation of the system of

discrete nonlinear algebraic equations which model either the Euler or thin-layer Navier-Stokes

(TLNS) equations for 2D steady flow. This differentiation results in very large systems of linear

algebraic sensitivity equations which must be solved to obtain these derivatives of interest. In

Refs. [13] through [23], the fundamental sensitivity equations are solved in what is henceforth

referred to herein as the "standard" (i.e., non-incremental) form. Furthermore, in these references,

a direct solver method is applied to solve these equations; the single exception is Ref. [23],

where a hybrid direct/iterative approach is adopted for an isolated airfoil example problem. There

are some important advantages in using a direct method when feasible; these are discussed in

the references and are also noted later in this article. However, the most serious disadvantage

of a direct method is the extremely large computer storage requirement, which for practical 3D

problems appears to be well beyond the current capacity of modem supercomputers; this capacity

can even be exceeded in 2D on computational grids containing a large number of points.
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In an effort to circumvent the computer storage limitation for the direct methods, this

study focuses on fundamental algorithm development for the efficient itcrative solution of the

aerodynamic sensitivity equations. The principal motivation and objective is to develop a solid

framework in 2D from which future extensions to 3D will be feasible. In general, one of the

most serious difficulties encountered in the development and/or application of itcrative techniques

is that of poor overall conditioning and lack of diagonal dominance in the coefficient matrix.

Unfortunately, this is a very common occurrence in the coefficient matrices of interest here; the

severity varies greatly and depends on many factors. This problem can manifest itself in either

poor performance or even complete failure (i.e., divergence) of an iterative algorithm.

A computationally useful property of the "incremental" form (also commonly known as the

"delta" or "correction" form) can be effectively exploited to combat these problems of poor

matrix conditioning. This property is that "approximations of convenience" can bc introduced

into the coefficient matrix operator of the equations, without affecting the final converged vaiucs

of the sensitivity dcrivatives. The approximations must be "reasonable" enough so that the

resulting iterativc strategy is convergent. In contrast, if any approximations are made to the

coefficient matrix operator of the equations in the standard form, then the computed sensitivity

derivatives cannot bc consistent discrete forms; that is, they will not bc the correct derivatives

of the nonlinear algebraic equations which are solved when generating the steady-state flow

solution. In particular, it is proposed and successfully demonstrated numerically herein, that the

identical diagonally dominant approximate coefficient matrix operator and algorithm, commonly

associated with implicit methods for solving the nonlinear flow equations, can also be used to

iteratively solve (in incremental form) the consistent discrete systems of linear equations for

aerodynamic sensitivity analysis.

The remainder of this article is organized as follows. Thc next section, presentation of theory,

is further subdivided into four subsections which review and discuss: 1) governing equations,

6
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spatial discrctization, and implicit formulation; 2) fundamental aerodynamic sensitivity equations

in standard form; 3) basic linear equation solving in incremental form; and 4) incremental solution

of the equations of aerodynamic sensitivity analysis. In this last subsection, some significant

implications of the incremental formulation are compared to the standard form. Following the

presentation of theory section, computational results are presented which illustrate application

of the methodology to two example airfoil problems: 1) subsonic low Reynolds number laminar

flow; and 2) transonic high Reynolds number turbulent flow. The final section is a summary

where conclusions are given.

2.0 Presentation of Theory

2.1 Governing Equations, Spatial Discretization and Implicit Formulation

The governing equations considered are the 2D thin-layer Navier-Stokes equations, which

are solved here numerically in integral conservation law form using an implicit upwind cell-

centered finite volume formulation [26],[27]. Higher-order accurate approximate representation

of the convective and pressure terms is accomplished using the popular flux-vector splitting

upwind formulation of van Leer [28], and the thin-layer viscous terms are modeled using central

"differences." At steady-state, this discretization of the governing equations over the domain

including the numerical boundary conditions is expressed as

hJ

{R(Q*)} = {0} (1)

z =

where Eq. (1) represents a large system of coupled nonlinear algebraic equations, and the "root,"

{Q* }, is the steady-state numerical solution for the field variables. In Eq. (1) and henceforth,

the notation, "{ }", indicates a global column vector.

The well-known Newton linearized "incremental" strategy can in principle be applied to

the root finding problem in solving Eq. (1). Strict application of Newton's method, including
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consistent treatment of the boundaryconditions, generally results in very large error reductions

per iteration; quadratic convergence is achieved when the transient solution enters the range of

attraction to the root [29],[30]. Newton's method presently appears infeasible for application to

practical 3D problems because of the excessive computer storage which is required for a direct

solution of the linear problem at each Newton iteration. While feasible in 2D, studies have

also shown the direct Newton's method to be not necessarily the most efficient method with

respect to overall CPU time, despite the large error reductions per iteration which are realized

[29]. More commonly, therefore, CFD software has resorted to the use of iterative methods to

solve these equations.

Implicit iterative methods for solving the Navier-Stokes equations are related to Newton's

method, and are represented here as

[0 q/
0Q ]{nAQ} = {Rn(Q)} (2)

{Qn+,} = {Qn} + {nAQ }
(3)

n = 1,2,3,...

where 'n'isan iterationindex,and {hA Q} isthe incrementalchange in the fieldvariablesfrom

the present "known" (n th) iteration to the next (nth+l) iteration level. An initial guess, {Q1 },

is required to initiate this iterative procedure, which in the present study is the freestream. The

left-hand side coefficient matrix operator,- [__0dJ, approximates the true Newton left-hand

side coefficient Jacobian matrix operator. Typically the differences between the true Newton

coefficient matrix operator and the approximate coefficient matrix operator of Eq. (2) include,

but are not limited to:

1) A "time-step" term is included (i.e., added) and thus significantly enhances each diagonal

element of the coefficient matrix, -/-_-_Q l, of Eq. (2). This is equivalent to the
l "_ j
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inclusion of under-relaxation in the true Newton's method, and under certain restrictions,

can make the iterative procedure of Eqs. (2) and (3) "time-accurate".

2) Simplifying linearization errors of various types are included in the construction of

the approximate operator,-[_-_]. For example, consistent boundary condition

linearization is typically neglected, and/or a first-order accurate upwind treatment of

the inviscid terms might be used in this matrix operator, despite the higher-order accurate

treatment of these terms in the vector {Rn(Q)} on the fight-hand side of the equations.

3) Additional "approximations of convenience" are included in the matrix operator in order

that a very efficient (in terms of computational work and computer storage) approximate

solution of the linear problem can be generated at each iteration on the nonlinear problem.

For example, with the popular spatially-split approximate factorization (AF) method

of Ref. [31], an approximate solution of Eq. (2) is produced at each n th iteration

using alternating direction sweeps which involve the solution of a series of uncoupled

sub-systems of block-tridiagonal linear equations in each sweep direction. It is this

algorithm which is selected for use in the example problems of the present study.

Additional well-known "iterative" algorithms which have been applied in solving the

Navier-Stokes equations include (but are not limited to) LU (Lower/Upper) approximate

factorizations [32], conventional relaxation methods [33], strongly implicit methods [34],

and preconditioned conjugate gradient methods [35],[36].

Of course, these approximations result in far less error reduction per iteration than can be

achieved with a faithful implementation of Newton's method; a converged steady-state solution

generally requires hundreds or even thousands of iterations to achieve using the iterative methods.

Because Eq. (2) is in incremental or "delta" form, however, at convergence the steady-state
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solution, {Q* }, is independent of any and all approximations which are used in the left-hand

side coefficient matrix operator.

2.2 Fundament_al Aerodynamic Sensitivity Equations In Standard Form

In general, the j± aerodynamic system response, Cj, is functionally dependent on the steady-

state field variables, {Q*); the vector of computational grid (x,y) coordinates, {X}; and perhaps

also explicitly on the vector of independent design variables, _. That is,

c+= (4)

The sensitivity derivative of Cj with respect to the k th design variable, /_k (i.e., the kth element

dCj onCj1,'l"J"dQ" _ oqOj_T J"d_k } + o':':3Cj-_k = { OQ J L d_k J + { OX J l -_k

of /_), is thus

(5)

where superscript "T" denotes transpose.

The notation for a total derivative has been used on the left-hand side of Eq. (5) indicating

that the total rate of change of Cj with respect to _k is included in the term, and to distinguish it

from the partial derivative on the right-hand side of the equation. Nevertheless, _-_ is a partial

derivative in the sense that Cj is in general a function of multiple independent design variables,

_, as seen in Eq. (4). In Eq. (5), the term {_-_ }, known as the grid sensitivity vector, can be

evaluated using any of several methods which have been suggested [23],[37],[38]; the strategy

of Ref. [23] was selected in the present study. Another method, of course, would be to use the

grid generation program to get "brute-force" finite differences for evaluating these terms. The

grid sensitivity vector is null if the design variable, Bk, is not related to the geometric shape of

the domain. The vector _ _-" }, which is the sensitivity of the steady-state field variables with
i, •.4_E J

. A
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respectto the kth designvariable,is evaluatedfor usein Eq. (5) by solvinga large systemof

coupled linear sensitivity equations which is derived subsequently.

The large system of coupled nonlinear algebraic equations which model the flow, given

previously by Eq. (1), can in general be expressed as

m

5

r

E

w

g.d

CL)}= {0} (6)

where in Eq. (6), as in Eq. (4), the dependence of these equations on the grid, {X}, and on

the design variables,/3, is now noted. In addition, Eq. (6) includes the possibility of an explicit

dependence on the steady-state lift coefficient, Ct,. This explicit dependence is found in the far-

field boundary conditions of an isolated lifting airfoil when the accurate "lift-corrected" far-field

boundary conditions of Ref. [39] have been used, as in the example problems of this study.

Note that CL itself depends on the field variables, {Q*}; the grid, {X}; and possibly explicitly

on the design variables,/3; in the manner expressed by Eq. (4). The explicit dependence on CL

noted in Eq. (6) might therefore appear redundant; however, the computational advantages of

this particular grouping of terms is discussed in detail in Ref. [23] and should become apparent

herein.

Differentiation of Eq. (6) with respect to /3k yields

(7)

where in Eq. (6) the term _ is evaluated using a relationship of the form given by Eq.

0a } is contributions to it arise only from the(5). Note that the vector very sparse; nonzero

"lift-corrected" far-field boundary condition equations. Equation (7) is thus a large system of

coupled linear equations which in principle can be solved for the unknown vector, { _.0_), one

such solution for each design variable, ¢/k. This method is known herein and elsewhere as the

quasi-analytical method for computing sensitivity derivatives.

11
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The matrix [g-_l of Eq. (7)is the Jacobian of the nonlinear flow equations (evaluated at

steady-state) with respect to the field variables and includes consistent treatment of all boundary

conditions; an exception is that contribution resulting from the explicit dependence of the lift-

corrected far-field boundary conditions on CL. Substitution of Eq. (5) for _ into Eq. (7)

ac_'_ T
reveals that this contribution to [g-_] is given by the very sparse matrix, {

OR 1[
 Sl-z0- f . The

man-ix [_1 of Eq. (7)is the Jacobian of the flow equations (evaluated at the steady-state

and including all boundary conditions) with respect to the grid coordinates [17],[18]; again the

exception is the contribution from the explicit dependence of the far-field boundary conditions

on CL. Here this contribution is given by the very sparse matrix

{ _} of Vq. (7) accounts for explicit dependencies (if any) of the flow equations, including

boundary conditions, on ilk; the contribution to this vector from the CL dependence of the

far-field boundary conditions is given by the vector _ _UfL/ _-_-k .

A well-known closely related alternative strategy for computing sensitivity derivatives,

known as the adjoint variable method, is easily developed using expressions which have been

presented thus far. This begins by combining Eqs. (5) and (7) to yield

dCj OCj

+{Aj}T ([0R] dQ* / dX OR/dCL' (8)

L_

The adjoint variable vector, {Aj}, is arbitrary at this point, since the inner product of {Aj} is

taken with the nul__.[1vector, from Eq. (7). Thus there is no ne...Atchange from Eq. (5) to Eq. (8)

since theentire additional term on the right-hand side of Eq. (8) is zero, for any and all {Aj}.

12
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Expanding and rearranging, Eq. (8) becomes

dCj ({ 0Cj _ T ) dX 0Cj A T 0R T 0R

(9)

The necessity of evaluating the vector, { _}, using Eq. ('7) is eliminated for all flk by selecting

the vector, {Aj}, such that the coefficient of { _9___}in Eq. (9) is null. That is, selection of {Aj}

which satisfies

T OR

oqJ (10)

_J
w

=

i

or

{Aj}+ OQJ ={0) (ll)

Therefore, following the solution of Eq. (11) for this particular choice of the adjoint variable

vector, {Aj}, the sensitivity derivatives of Cj with respect to all flk are computed by

dCj OCj_ T dX 0Cj {Aj)T(0_k}+{Aj)(ff___L_L)dCL

w

_z

w

m_

w

Note that Eq. (12) can bc solved for _ only if _k is known or if Cj = CL. Therefore, when the

lift-corrected far-field boundary conditions are treated in the manner described, then _ must be

the first sensitivity derivative which is calculated (for any and all flk of concern), regardless of

whether the sensitivity of CL is of actual interest. (Normally, of course, the sensitivity derivatives

of CL will be of interest in a typical problem.) A particular solution, {Aj}, is valid only for a

specific system response, Cj, and thus solution of Eq. (11) must be repeated for each different

system response of interest.

= =
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It is simple to verify from the preceding equations, and significant to note, that each solution,

{_-_}, of Eq. (7)fora particular design variable can be used for an unlimited number of

different system responses. In contrast, however, each solution, {Aj }, of Eq. (11) for a particular

system response can be used for an unlimited number of different design variables. Therefore,

the total number of large linear systems which must be solved for a particular problem can be

minimized through a judicious selection of one of these two methods, depending on whether the

number of system responses of interest or the number of design variables of interest is larger.

In terms of computational efficiency, the significance of the well-known difference in the two

methods is mitigated greatly if a direct method is used to solve these linear systems (i.e., either

Eq. (7) or Eq. (11)), because with either method the LU factorization must only be done once

and it is then repeatedly reused for multiple right-hand side vectors. However, this distinction can

become very important if an iterative strategy is used to solve these linear systems, particularly

if the difference between the number of design variables and the number of system responses

of interest is very large. Despite this difference, it is emphasized that these two methods are

equivalent in the sense that they yield identical values for the sensitivity derivatives, if properly

implemented computationally.

Summarizing briefly, it has been shown that calculating aerodynamic sensitivity derivatives

using the discrete direct differentiation method requires the direct or iterative solution of large

linear systems of equations of the type given by either Eq. (7) or Eq. (11). Henceforth in

this article, these two systems of linear equations are known as the aerodynamic sensitivity

equations in standard form. Fundamental algorithm development for the solution of one of these

two linear systems is easily extended and applied to the other, since their respective coefficient

matrices,[_-_] and [___]T, are transposes of each other. When the standard form equations

are solved, n...qoapproximations can be introduced into any of the terms, without simultaneously

14
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introducing error into the resulting sensitivity derivatives. In this form, the framework to support

the development of iterative methods is thus rigid and restrictive.

As a consequence of the preceding discussion, given the choice of a higher-order accurate

upwind approximation for the spatial discretization for the flow analysis, a consistent higher-

order accurate upwind spatial discretization including a fully consistent treatment of all boundary

conditions is required in the coefficient matrix operator of the sensitivity equations (in standard

form). Furthermore, there can be no "time term" added here to enhance each element of the

diagonal, as is used (in contras0 in the implicit formulation of Eq. (2) for solving the nonlinear

the resulting coefficient matrix (eitherLol4jr0,_R ] or )of theflow equations. Unfortunately,

linear sensitivity equations in standard form in this case is not block-diagonally dominant [33],

and consequently the computational performance of traditional iterativc methods for solving

these equations in this standard form is expected to be poor, or even fail [23]. Therefore, it

is this particular difficulty (i.e., the lack of sufficient diagonal dominance) and its resolution

which is of principal concern in the development of the incremental form of the equations in

the following sections.

L J

I

I

2.3 Basic Linear Equation Solving in Incremental Form

Consider the linear system of algebraic equations in the general form

[A]{Z*} + {B} = {0} (13)

where {Z*} is the solution vector. In treating the problem of solving Eq. (13), in essence a "root

finding" problem, application of Newton's method (traditionally used in root finding for nonlinear

equations) to the linear problem yields the basic two-step iterative incremental formulation

i

i

15
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{Z re+l} = {Z m}+{mAz}

(15)

m = 1, 2, 3, ....

where 'm' is an iteration index, and {mAz} is the incremental change in the solution from the

(mth+l) iteration level. An initial guess, {Z 1 }, is required to beginknown (m th) to the next

the procedure, which in the present study is taken everywhere as zero. If Newton's method is

applied strictly, the coefficient matrix [A] is equal to the matrix [A], and clearly the two-step

iterative strategy of Eqs. (14) and (15) for the linear problem converges on the first iteration,

for any initial guess. Therefore, in this case, solution of the linear system in the standard form

(Eq. (13)) and solution in the incremental form (Eqs. (14) and (15)) are equivalent.

More generally, however, the matrix [A] is not necessarily equal to the matrix [A]. The

matrix [A] can be any convenient approximation of the matrix [A] with the restriction that [A]

must approximate [A] well enough so that the two-step iterative procedure (Eqs. (14) and (15))

converges (or, at the very least, can be forced to converge by including a strategy such as under-

relaxation). Simply stated, [A] should capture the essence of [A]. Furthermore, because the

equations have been cast in "delta" form, the incremental method produces the unique solution

of Eq. (13), {Z* }, if convergent. In this formulation, the purpose of the left-hand side operator

is to drive the right-hand side vector to zero.

2.4 Incremental Solution of the Equations of Aerodynamic Sensitivity Analysis

W

W

n

Application of the fundamental incremental formulation for linear equation solving, Eqs.

(14) and (15), to the linear system of Eq. (7) (i.e., the quasi-analytical method) for computing

aerodynamic sensitivity derivatives, gives

m

16
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(16)

dQ m+l dQ m 1, m^ dq 1

rn= 1,2,3, .....

(17)

(18)

loft co f cientmarxo  rator  o rox matoswhere

{ drt'_ ] the m th iterationwill be discussed subsequently, in greater detail. The vector -a-_k S represents

on the total derivative of the discrete steady-state nonlinear flow equations, Eq. (6), with respect

to ilk. From Eq. (7), clearly this vector must be driven to zero in order to find the solution,

{_-_}, of Eq. (7), which is of course the objective of the incremental strategy of Eqs. (16),

{ arm ] taking(17), and (18). Approximations must no.._!be made to any terms of the vector, --T-_-kS,

particular care that a consistent treatment of all boundary conditions is included, if the converged

solution is to yield the correct, consistent, discrete sensitivity derivatives. The final solution at

convergence depends only on the terms of this right-hand side vector.

It is proposed herein that the identical approximate left-hand side coefficient matrix operator

[_-ff] and algorithm which are used in solving the nonlinear Eq. (2)for the flow variables

also be used (when evaluated at the steady-state) as the approximate left-hand side operator and

algorithm which are used in solving the linear Eq. (16) for the flow sensitivities. That is, a

first-order accurate upwind spatial discretization of the inviscid terms is used in this operator

as an approximation here to the higher-order accurate upwind discretization of these terms.

It is most significant to note that by design in this choice, block-diagonal dominance is now

obtained and maintained in the left-hand side coefficient matrix. In addition, a false "time term"
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is included (i.e., added)so each diagonal element of the matrix, [_--_],
is further enhanced;

this is equivalent to under-relaxation in the incremental strategy of Eqs. (16), (17), and (18).

The boundary conditions are not linearized in a fully consistent manner in this approximate

matrix operator; far off-diagonal contributions from the "periodic" boundary conditions which

arise when calculations are performed on a 'C' or 'O' mesh are neglected. However, these

"periodic" boundary conditions cause special computational difficulties for the standard form

equations which require a consistent treatment in the left-hand side matrix operator [23],[25].

Finally, the well-known spatially-split approximate factorization (AF) algorithm [31] (also used

here in solving the nonlinear flow equations) is used to solve Eq. (16) (approximately) at each

m th iteration. If the resulting block-tridiagonal coefficient matrices are stored over the entire

domain, only a single LU factorization of each of them is required, which can be repeatedly

reused for all iterations and all design variables; this strategy is implemented in the large 2D

example problems which are presented herein.

If the adjoint variable formulation for computing the sensitivity derivatives is preferred, then

application of the incremental formulation for linear equation solving, Eqs. (14) and (15), to the

linear system of Eq. (11) for computing the adjoint variable vector, {,_j}, yields

liT = LoQJ- (19)

IIIIIII

=

U

(20)

m = 1,2,3, .....

For application in Eq. (19), it is straight-forward to transpose the appro×imatc left-hand side

coefficient matrix operator and algorithm which were described previously for use in Eq. (16).

Again, only a single LU factorization of the globally stored block-tridiagonal coefficient matrices

is required.

18



3.0 Computational Results

3.1 Subsonic Airfoil, Low Reynolds Number Laminar Flow
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The first example problem is subsonic low Reynolds number constant viscosity laminar

flow over a NACA 1406 airfoil. Flow is considered at a freestream Mach number, Moo = 0.6,

angle of attack, a = 1.0 °, and Reynolds number, RE = 5.0 x 103. A computational grid, a

'C' mesh, of 257 x 65 points is used, with the far-field boundary placed five chords from the

airfoil; points are clustered near the airfoil surface to assist with the resolution of gradients in

this vicinity. The spatially-split AF algorithm is used to achieve the converged (i.e., the average

global error is reduced to machine-zero) steady-state solution, {Q* }, to the discrete nonlinear

flow equations, Eq. (1). Figure 1 is a plot of the computed steady-state pressure coefficient, Cp,

on the surface of the airfoil. The computed lift, drag, and pitching moment coefficients obtained

are CL = 0.18148, CD = 0.41703 E-01, and CM =- 0.23718 E-01.

Sensitivity derivatives of CL, Co, and CM are computed with respect to six independent

design variables: 1) airfoil maximum thickness, T; 2) airfoil maximum camber, C; 3) location of

maximum camber, L; 4) angle of attack, a; 5) freestream Mach number, Moo; and 6) Reynolds

number, RE. The three geometric shape related design variables (T, C, and L) are parameters

which together with well-known analytical expressions (given for example in Refs. [2] or [23])

define the 'x' and 'y' coordinates on the surface (and hence the shape) of the NACA 4-digit

airfoil. Sensitivity derivatives are computed using three methods: 1) the quasi-analytical method;

2) the adjoint variable method; and 3) the "brute force" finite difference method. Application of

these three methods is described subsequently in greater detail; computational result comparisons

are summarized in Table I. For the quasi-analytical and adjoint variable methods, it is noted

that the direct solver approach was abandoned, because for this large computational grid the

w

N
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conventional ("in-core" storage) banded matrix solver algorithm exceeded the maximum 40

megaword storage computer facility restriction.

Table I -Summary Of The Computational Results For The NACA 1406 Airfoil:

Subsonic Laminar Low Reynolds Number Example Problem

*All Calculations Performed on a Cray-2 Computer.

w

i i

E

u

m

!

Solution

Method

Quasi-

Analytical

Method,

Approximately

Factored

Incremental

Scheme

Adjoint

Variable

Method,

Approximately

Factored

Incremental

Scheme

"Brute Force"

Finite

Difference

Method

Total CPU

Time (Sees)*

458

579

Design
Variable dCL

d#
dCD

dZ

+2.019 E-01

dCM

dZ

+1.805 E-01T -1.392 E+00

C +6.583 E+00 +7.583 E-02 -2.240 E+00

L -1.154 E-02 +5.544 E-05 -2.122 E-02

a +6.122 E+O0 +9.181 E-02 -3.168 E-02

Moo +5.428 E-03 +1.628 E-02

+5.958 E-06 -4.912 E-06

+2.019 E-01-1.392 E+00

RE

-4.732 E-03

-6.564 E-07 .......

+1.805 E-01T

C +6.583 E+O0 +7.583 E-02 -2.240 E+00

L -1.154 E-02 +5.544 E-05 -2.122 E-02

a +6.122 E+00 +9.181 E-02 -3.168 E-02

Moo +5.428 E-03 +1.628 E-02 -4.732 E-03

RE +5.958 E-06

T

-4.912 E-06 -6.564 E-07

-1.392 E+00 +2.019 E-01 +1.805 E-01

7404

C +6.583 E+00 +7.583 E-02 -2.240 E+00

L -1.154 E-02 +5.548 E-05 -2.122 E-02

a +6.122 E+00 +9.181 E-02 -3.168 E-02

Moo +5.426 E-03 +1.628 E-02 -4.732 E-03

RE +5.958 E-06 -4.912 E-06 -6.564 E-07

U

m

m
m

w

l

For the quasi-analytical method, sensitivity derivatives are calculated through the iterative

solution of the incremental form (i.e., Eqs. (16), (17), and (18)) of six large systems of linear

equations, one such linear system for each of the six design variables considered here. The

well-known spatially-split AF algorithm [31] is used, with a constant Courant number of 45

(i.e., local time-stepping is used), which is found by numerical experimentation to be about the
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optimum for computational efficiency in this example problem. An eight order-of-magnitude

reduction in the average global error is the specified convergence criterion in solving each of

these six linear systems; an average of 683 iterations is required in each case to achieve this

convergence criterion.

For the adjoint variable method, sensitivity derivatives are calculated through the iterative

solution of the incremental form (i.e., Eqs. (19) and (20)) of three large systems of linear

equations, one such linear system for each of the three system responses considered here. Again

the AF algorithm is used, and a constant Courant number of 45 is found to be about the optimum.

An average of 1743 iterations is required to achieve an eight order-of-magnitude average global

error reduction, the required convergence criterion for each of these three linear system solutions.

In application of the "brute-force" finite difference method, central finite differences are used,

with a forward and backward perturbation of each design variable, Aflk = +5.0E - 06 x _k.

Machine-zero converged steady-state solutions of the discrete nonlinear flow equations are

obtained for each forward and backward perturbation of each design variable; thus for six

design variables, a total of 12 solutions to the nonlinear flow equations are produced. The AF

algorithm is again used to solve the flow equations; in order to reduce computational work during

these solutions, the LU factored block-tridiagonal systems are stored over the domain and are

repeatedly reused for ten iterations prior to each re-evaluation of these terms. (See Ref. [40]

for additional details concerning this strategy.)

In comparing the sensitivity derivatives calculated using the quasi-analytical method with

the adjoint variable method, the results are seen to agree, as expected. Unexpectedly, however,

the computational work required by the latter method (where a total of three linear systems are

solved) is seen to exceed that of the former (where a total of six linear systems are solved);

the convergence rates obtained with the latter method were significantly slower than those for

the former method in this particular example problem. In comparing the sensitivity derivatives
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calculated using the method of finite differences with the other two methods, excellent agreement

is obtained, as expected. The "brute-force" finite difference method is seen to be very much

more costly computationaUy than either the quasi-analytical or adjoint variable methods.

3.2 Transonic Airfoil, High Reynolds Number Turbulent Flow

i

N

I

M

I

I

u

The second example problem is transonic high Reynolds number turbulent flow over a

NACA 1406 airfoil. The variation of the molecular viscosity with temperature is computed

using Sutherland's law, and turbulence is simulated using the well-known algebraic model of

Baldwin and Lomax [41]. Flow is considered at a freestream Much number, Moo = 0.8, angle

of attack, a --- 1.0 °, and Reynolds number, RE -- 5.0 x 106. A 'C' mesh with 257 x 65 grid

points is again used with the far-field boundary placed five chords from the airfoil; clustering of

points near the surface is tighter in the present example than in the previous example because

of the higher Reynolds number. The spatially-split AF algorithm is used to achieve a machine-

zero converged steady-state solution. Figure 2 is a plot of the computed steady-state pressure

coefficient, Cv, on the surface of the airfoil, and Figure 3 is a complete contour plot of the static

pressure, which clearly shows the presence of a shock wave on the suction surface of the airfoil.

The computed lift, drag, and pitching moment coefficients are CL = 0.41662, CO = 0.77501

E-02, and CM = - 0.45633 E-01.

Sensitivity derivatives of CL, CD, and CM are computed with respect to the same six

independent design variables previously considered. The quasi-analytical, the adjoint variable

and the "brute-force" finite difference methods are also applied in computing these sensitivity

derivatives. However, for the quasi-analytical and adjoint variable methods, the approximation of

neglecting the variation of the laminar and turbulent viscosities with respect to the field variables,

{Q'}, and the computational grid, {5(}, is made. That is, in the analytical construction of all

the derivatives (including the Jacobian matrices, [_-_] and t_,-_J[a-_R])whichare used to calculate
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the sensitivity derivatives, the approximation is made that both l_minar and turbulent viscosities

are constant. For this reason, the quasi-analytical or the adjoint variable methods can not give

sensitivity derivatives which are exactly consistent discrete forms; the results from the "brute-

force" finite difference procedure are thus considered to be more accurate in this example. This

approximation is used, of course, because of the great complexity involved in consistently treating

the derivatives of the turbulent viscosity; in fact, a fully consistent treatment of these terms is not

possible at points where this turbulence model is not continuously differentiable. Application of

the three methods is described subsequently in greater detail; computational result comparisons

are summarized in Table II.

For the quasi-analytical and adjoint variable methods, the sensitivity derivatives are computed

using the spatially-split AF algorithm to iteratively solve in incremental form the required linear

systems which have been described herein. With both methods, a constant Courant number of

30 is used (approximately the optimum value, as determined numerically); in all cases an eight

order-of-magnitude reduction in the average global error is the convergence criterion enforced.

For the quasi-analytical method, an average of 1619 iterations is needed to achieve convergence;

for the adjoint variable method, an average of 1798 iterations is required. Finally, the "brute

force" finite difference method is applied here in a manner identical to that described in the

previous example problem.

In comparing the sensitivity derivatives calculated using the quasi-analytical method with

the adjoint variable method, the results are seen to agree, as expected. In addition, it is noted that

the total computational cost of the former method is approximately twice the cost of the latter, as

expected (since in the former method six linear systems are solved compared to only three in the

latter method, and the average number of iterations is comparable). In comparing the sensitivity

derivatives calculated using the method of finite differences with the other two methods, there

is some discrepancy in the results, as expected, because of the neglected consistent treatment
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of the viscosity. For the most part, the agreement between these calculated derivatives is good.

The most significant discrepancy is noted in the sensitivity derivatives of CL with respect to

maximum airfoil thickness, T, where the derivatives differ by a factor of about two. However,

this sensitivity derivative is smaller in magnitude than the largest derivatives. As in the first

example problem, the "brute-force" finite difference method is seen here to be very much more

costly computationally than either the quasi-analytical or adjoint variable methods.

Table II - Summary Of The Computational Results For The NACA 1406 Airfoil:

Transonic Turbulent High Reynolds Number Example Problem

*All Calculations Performed on a Cray-2 Computer.

m

E

-2

L_

L_

Solution

Method

Quasi-

Analytical

Method,

Approximately

Factored

Incremental

Scheme

Adjoint

Variable

Method,

Approximately

Factored

Incremental

Scheme

"Brute Force"

Finite

Difference

Method

Total CPU

Time (Secs)*

Design

Variable

3k

T

1052

586

8526

+3.672 E-01

dCD

d3

+2.670 E-01

dCM

-3.292 E-01

C +2.020 E+01 +6.638 E-01 -5.631 E+00

L +1.367 E-01 -1.141 E-02 -5.650 E-02

a +1.216 E+01 +4.233 E-01 -4.916 E-01

Moo +2.016 E+00 +1.964 E-01 -5.814 E-01

RE

T

-4.836 E-10

+2.670 E-01

+4.402 E-09

+3.672 E-01

-4.837 E-10

-3.292 E-01

C +2.020 E+01 +6.638 E-01 -5.631 E+00

L +1.367 E-01 -1.141 E-02 -5.650 E-02

o_ +1.216 E+01 +4.233 E-01 -4.916 E-01

Moo +2.016 E+O0 +1.964 E-01 -5.814 E-01

-4.836 E-10

+2.744E-01

RE

T

+4.402 E-09

+7.919 E-01

-4.837 E-10

-4.153 E-01

C +2.063 E+01 +6.776 E-01 -5.770 E+00

L +1.107 E-01 -1.174 E-02 -5.350 E-02

o +1.299 E+01 +4.346 E-01 -6.328 E-01

Moo +2.040 E+00 +1.969 E-01 -5.972 E-01

RE -1.185 E-09 -2.829 E-10 +1.497 E-10

u

um
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4.0 Summary and Conclusions

k

An incremental strategy has been presented for iteratively solving the very large systems

of linear equations which are associated with aerodynamic sensitivity derivatives for advanced

CFD codes. The method permits use of an approximate left-hand side coefficient matrix operator

of convenience, which at convergence yields the consistent discrete sensitivity derivatives of

interest. In the present research, it is shown that the identical left-hand side matrix operator and

well-known spatially-split approximate factorization algorithm used to solve the nonlinear flow

equations can also be successfully used to efficiently solve the linear sensitivity equations. The

procedures are demonstrated on two example airfoil problems: subsonic low Reynolds number

laminar flow and transonic high Reynolds number turbulent flow.

. i
u
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Figure 1 -- Chordwise Distribution Of Streamwise Pressure Coefficient, NACA 1406 Airfoil,

Moo = 0.6, angle of attack, a = 1.0 °, and Reynolds number, RE = 5.0 x 103, Laminar Flow.

Figure 2 -- Chordwise Distribution Of Streamwise Pressure Coefficient, NACA 1406 Airfoil,

Moo ---0.8, angle of attack, a = 1.0 °, and Reynolds number, RE = 5.0 x 106, Turbulent Flow.

Figure 3 -- Static Pressure Contour Plot, NACA 1406 Airfoil, Moo = 0.8, angle of attack, a =

1.0 °, and Reynolds number, RE = 5.0 x 106, Turbulent Flow.
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